Example name Guidelines for cardiac arrest

Effect size	Odds ratio
Analysis type	Basic analysis with between-studies variance
Version	Long

Synopsis

This analysis includes nine studies where patients were randomized to be treated for cardiac arrest based on either old guidelines or new guidelines. Outcome was survival (being alive), and we focused on the odds ratio as the effect size.

We use this example to show

- How to enter data from 2x2 tables
- How to get a sense of the weight assigned to each study
- How the study weights are affected by the model
- How to perform a sensitivity analysis
- How to perform a cumulative analysis
- How to interpret statistics for heterogeneity
- How to create a high-resolution plot

To open a CMA file > Download and Save file | Start CMA | Open file from within CMA

Download CMA file for computers that use a period to indicate decimals Download CMA file for computers that use a comma to indicate decimals

Download this PDF Download data in Excel Download trial of CMA

Start the program

- Select the option [Start a blank spreadsheet]
- Click [Ok]

† Con	preher	nsive	meta	analy	ysis - [Da	ta]																									
<u>F</u> ile <u>E</u>	dit Fo	ormat	View	<u>I</u> ns	sert Ider	ntify	Too	ls C	om	puta	tiona	l opt	ions	An	alyses	; <u>H</u>	elp														
Run an	alyses	→	% D	Ê	🖷 🖬	4	X	B) (î	3			·= ' '		+00	÷.8	H +	1	→ +	\checkmark	≜ ↓	Z↓ A↓									
	A		В		С		D			E		F			G		н		I.		J		к	L		м	N		0	Р	Q
1								-	_						_	G	S Wel	come		_		-		-		-	×	D			
2																ľ		come							,						
3																												18.			
4																	Wh	at wo	ould yo	u lik	e to do?							18.			
5																11											_	18.			
5																												18.			
8																	0	Run H	se tutori	al								18.			
9																£.	(C)	Start a	hlank s	nrea	Isheet							10.			
10																Ŀ.	~	o										10.			
11																				vaad	1000 U.000	9 - 1	omplate								
12																	0	Open	an exist	ing file	e										
13																	0	Import	data fro	om an	other prog	gram						18.			
14																												18.			
15																											-	18.			
17																												18.			
18																												10.			
19																11												10.			
20																11															
21																															
22																															
23																															
24																															
25																															
26																															
28																											-				
29																	~	Show	this dial	og wł	nen I start	the p	orogram								
30																								lose		OK	1				
31																								1030		UK	1				
32																															
33																-	_	-	_	-	_	-	_	_	-	_	_				
34																															
35																															

Click Insert > Column for > Study names

<table-of-contents> Comprehensive meta a</table-of-contents>	nalysis - [Data]							
<u>File Edit Format View</u>	Insert Identify Tools Compu	tational options Analyses <u>H</u> elp						
Run analyses 🔸 🗞 🗋	Column for 🕨 🕨	Study names	$\downarrow \downarrow \rightarrow +$	✓ 🗌 ĝ↓	≩↓ 🔍			
A B	Blank column	Subgroups within study	н і	J	к	L	м	N
1 2 3 4 5 6 7 8 9	Blank row Blank rows Gopy of selected row(s) Study	Outcome names Time point names Effect size data Moderator variable						

The screen should look like this

👬 Co	mprehensive met	a analysis - [[Data]											
<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	ew <u>I</u> nsert I	dentify <u>T</u> o	ols Compu	tational opt	ions Analys	es <u>H</u> elp							
Run a	analyses 🔸 🗞 [🗅 🚅 🚟 I		% 🖻 🛍	∕⊒))	= *≣ #3	3 1:08 🛗 👻	$\downarrow \rightarrow -$	⊢ ✓ 🗆	≜i zi 🤇)			
	Study name	в	С	D	E	F	G	н	I	J	к	L	м	N
2														
3														
4														
6														
8														
9														

Click Insert > Column for > Effect size data

Comprehensive meta analysis - [Data]								
<u>File Edit</u> Format <u>View</u> Insert Identify <u>T</u> ools	Computational options Analyses Help							
Run analyses → % [] [] Column for	Study names	$\star \downarrow \to -$	⊢ ✓ 🗆	\$† <u>Z</u> † 🤇				
Study name	Subgroups within study Comparison names	н	I	J	К	L	м	N
Copy of selected C	Outcome names Time point names							
4 5 6 Copy of selected m	ow(s) Effect size data Moderator variable							
7 8								

The program displays this wizard

Select [Comparison of two groups...]

Select [Show all 100 formats] Click [Next]

Drill down to

Click [Next]

Dichotomous (number of events) Unmatched groups, prospective ... Events and sample size in each group

© www.Meta-Analysis.com

Guidelines for cardiac arrest

The program displays this wizard

Enter the following labels into the wizard

- First group > New
- Second group > Old
- Name for events > Alive
- Name for non-events > Dead

Click [Ok] and the program will copy the names into the grid

Ŧ	Com	prehensive r	neta	analysi	s - [Data]														
Eil	le <u>E</u> o	dit Format	<u>V</u> ie	v <u>I</u> nser	t Identify	<u>T</u> ools	Computati	onal options	s Analyses	<u>H</u> el	р								
Ru	in ana	alyses 🔶 🔇	2	J 🚁 4		њ		 '- '=	* ≣ ; % ta	8 †	i • [$\downarrow \rightarrow +$	/ 🗌 🏄	🛛 🕹					
		Study name	Π	New Alive	New Total N	Old Alive	Old Total N	Odds ratio	Log odds ratio	s	td Err	Variance	J	к	L	м	N	0	Р
	1		U)											
H	2		_																
	4																		
	5																		
⊢																			
	8									_									
	9										Grou	p names					X		
1	10																		
1	11										Gro	up names foi	cohort or	prospectiv	e studies				
H	12										Nam	e for first group	(e.g., Treate	ed)	N	lew			
i i	14										Nam	e for second a	oup (e.a., Co	ontroll	6	Did	_		
1	15																_ 1		
1	16		_																
\mathbb{H}	17		_								Bina	ary outcome	in cohort o	r prospecti	ve studies				
H	19										Nam	e for events (e.	g., Dead)		A	live			
2	20										Nam	e for non-even	ts (e.g., Alive	9)ead			
2	21																- 1		
$+\frac{2}{2}$	22		_										-)	
	24												C	ancel	Apply	Uk			
2	25									L									
2	26												_	_	_	_	_		
	27		_																
	28																		
	30																		
3	31																		
3	32																		

Rather than enter the data directly into CMA we will copy the data from Excel

- Switch to Excel and open the file "Guidelines for cardiac arrest"
- Highlight the rows and columns as shown, and press CTRL-C to copy to clipboard

	⊡ ") • (° • -							Guidelines fo	or cardiac a	arrest.xlsx - N	/licrosoft Ex	cel	
F	ile Home Ins	ert Page La	yout Fo	rmulas [Data Rev	iew Viev	v Acrol	pat					
ľ	Cut	Calibri	* 11	т А А	= =	■ ≫/	📑 Wrap	Text	General		•	5	
Pa	ste 🛷 Format Painter	BIU	*	<u>⊘</u> - <u>A</u> -	E E R		•a• Merge	e & Center 👻	\$ - %	• • •.0 .00	.00 Cond .0 Forma	tional Forn tting ∗ as Tat	nat Cell ple = Styles =
	Clipboard 🛛		Font	- Fa		Alignm	ent	Es.	Nu	imber	- Fai	Styles	
	S12	- (° .	f _x										
	А	В	С	D	E	F	G	Н	1	J	K	L	М
1	Study	New Alive	New N	Old Alive	Old N								
2	Steinmetz, 2008	41	226	21	193								
3	Sayre, 2009	96	1021	40	660								
4	Olasveengen, 2009	63	482	46	435								
5	Robinson, 2010	20	170	18	162								
6	Hinchey, 2010	47	410	18	425								
7	Hung, 2010	30	430	47	463								
8	Aufderheide,2010	211	1605	166	1641								
9	Bigham, 2011	177	2725	294	5054								
10	Lick, 2011	48	247	9	106								
11													
12													
13													
14													

Switch back to CMA

- Click in Cell Study name 1
- Press [CTRL-V] to paste the data into CMA
- Stretch the columns as needed for the text to be fully visible

Click here

👬 Co	omprehensive meta	a analysis ·	[Data]												
<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	w <u>I</u> nsert	Identify	<u>T</u> ools Com	putational	options An	alyses <u>H</u> elp								
Run	analyses 🔸 🗞 [) 🚅 👘		X 🗈		- *= *≣	••• ••• •••	$\downarrow \downarrow \rightarrow$	+ 🗸 🗌		Q				
	Study name	New Alive	New Total N	Old Alive	Old Total N	Odds ratio	Log odds ratio	Std Err	Variance	J	к	L	м	N	
1	Study 🥢	New Alive	New N	Old Alive	Old N										
2	Steinmetz, 2008	41	226	21	193	1.815	0.596	0.288	0.083						
3	Sayre, 2009	96	1021	40	660	1.609	0.475	0.195	0.038						
4	Olasveengen, 2009	63	482	46	435	1.272	0.240	0.206	0.043						
5	Robinson, 2010	20	170	18	162	1.067	0.065	0.345	0.119						
6	Hinchey, 2010	47	410	18	425	2.928	1.074	0.286	0.082						
7	Hung, 2010	30	430	47	463	0.664	-0.410	0.244	0.060						
8	Aufderheide,2010	211	1605	166	1641	1.345	0.296	0.110	0.012						
9	Bigham, 2011	177	2725	294	5054	1.125	0.118	0.098	0.010						
10	Lick, 2011	48	247	9	106	2.600	0.955	0.384	0.147						
11															
12															
13															
14															

Since we've copied the row with the titles, we can check to ensure that all columns are being used as intended. The column that had been "New Alive" is now called "New Alive". Similarly, all other columns are labeled correctly.

Note that the program has computed the odds ratio for all studies and displayed this (as well as the log odds ratio, its standard error and variance) in the yellow columns.

Now, we can remove the first row

- Click in the first row to select it
- Click Edit > Delete row and confirm

<u>т</u> с	ompr	ehensive meta anal	lysis - [D	ata]												
<u>F</u> ile	<u>E</u> dit	Format <u>V</u> iew <u>I</u> n	sert Id	entify]	<u>F</u> ools Com	putational	options An	alyses <u>H</u> elp								
Run	ę ®ې	Bookmark data		1 🖨	ኤ 🖻 🛍	2 / 🔁	= ' = ' ≣	;00 ;36 ++	$\downarrow \downarrow \rightarrow$	+ 🗸 🗌		Q				
	ß	Restore data Column properties	;	New ptal N	Old Alive	Old Total N	Odds ratio	Log odds ratio	Std Err	Variance	J	к	L	м	N	0
1		0.1.0	~ ~ ~	wΝ	Old Alive	Old N	K									
2	43	Copy selection	Ctrl+C	226	21	193	1.815	0.596	0.288	0.083						
3	3 B≥ Copy with header 1021 40 660 1.609 0.475 0.195 0.038 4 B≥ Copy entire grid 482 45 435 1.272 0.240 0.903															
4	4 B2 46 435 1.272 0.240 0.003 5															
5	r leg copy entire gind to the table table to the table tabl															
6	•==	Paste	Ctri+v	410	18	425	2.928	1.074	0.286	0.082						
7	*	Cut	Ctrl+X	430	47	463	0.664	-0.410	0.244	0.060						
8	n	Delete	Del	1605	166	1641	1.345	0.296	0.110	0.012						
9		Delete row		2725	294	5054	1.125	0.118	0.098	0.010						
10		Delete Tow	ht	247	9	106	2.600	0.955	0.384	0.147						
11		Delete study	v	L												
12		Delete column		L												
13		Edit group names														
14		car group names														
10																
17																
10																
10																

Click here

The screen should look like this

∓ C	omprehensive meta	mprehensive meta analysis - [Data]													
<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	w <u>I</u> nsert	Identify]	<u>I</u> ools Com	putational	options An	alyses <u>H</u> elp	•							
Run	analyses → 🏷 [) 🚅 🖷		X 🖻 🕻	2 🕫 🕨	-'= '≣	.00 +.0 ++ +.0 .00	- ↓ →	• + 🗸 🗌		Q				
	Study name	New Alive	New Total N	Old Alive	Old Total N	Odds ratio	Log odds ratio	Std Err	Variance	J	к	L	м	N	T
1	Steinmetz, 2008	41	226	21	193	1.815	0.596	0.288	0.083						
2	Sayre, 2009	96	1021	40	660	1.609	0.475	0.195	0.038						
3	Olasveengen, 2009	63	482	46	435	1.272	0.240	0.206	0.043						
4	Robinson, 2010	20	170	18	162	1.067	0.065	0.345	0.119						
5	Hinchey, 2010	47	410	18	425	2.928	1.074	0.286	0.082						
6	Hung, 2010	30	430	47	463	0.664	-0.410	0.244	0.060						
7	Aufderheide,2010	211	1605	166	1641	1.345	0.296	0.110	0.012						
8	Bigham, 2011	177	2725	294	5054	1.125	0.118	0.098	0.010						
9	Lick, 2011	48	247	9	106	2.600	0.955	0.384	0.147						
10															
11															
12															
13															
14															

We've followed the convention of putting the treated (new guidelines) group before the control (old guidelines). When we do this, if (a) the treated group does better and (b) the outcome is something good (being alive) the odds ratio will be greater than 1.0.

To check that things are working as planned let's use the last study. The proportion surviving is roughly 20% (48/247) in the New group and around 10% (9/106) in the Old group. The odds ratio (2.600) is indeed greater than 1. In the analysis, odds ratio greater than 1 should be labeled "Favors New" while odds ratios less than 1 should be labeled "Favors Old". We need to apply these labels manually. © www.Meta-Analysis.com Guidelines for cardiac arrest - 8 - At this point we should save the file

Click File > Save As ... •

•	Comprehensive meta ana	rehensive meta analysis - [C:\Users\Michael\Dropbox\Workshops 2\Guidelines for cardiac arrest\suidelines for cardiac arrest.cma]													
<u>F</u> il	e <u>E</u> dit Format <u>V</u> iew <u>I</u> r	nsert	Ider	ntify <u>T</u> ools	s Computa	ational opti	ons Analys	es <u>H</u> elp							
	New	<u> </u>		🖨 🐰	Þa 🛍	2a 🕨 – Y	= *≣ ≠:8	*:0 ** ▼	$\downarrow \rightarrow +$	· 🗸 🖂 :	\$† <u>X</u> † 🗘				
	Open Ctri	1+0	∾ e	New Total N	Old Alive	Old Total N	Odds ratio	Log odds ratio	Std Err	Variance	J	К	L	м	N
	Import 41 226 21 193 1.815 0.596 0.288 0.083														
	Import 96 1021 40 660 1.609 0.475 0.195 0.038														
	Save Ctr	rl+S	63	482	46	435	1.272	0.240	0.206	0.043					
	Same Ar		20	170	18	162	1.067	0.065	0.345	0.119					
I	Save <u>A</u> S		47	410	18	425	2.928	1.074	0.286	0.082					
le	Print Ctr	I+P	30	430	47	463	0.664	-0.410	0.244	0.060					
m	Print setun		211	1605	166	1641	1.345	0.296	0.110	0.012					
1 =	T this secupin		177	2725	294	5054	1.125	0.118	0.098	0.010					
	Exit		48	247	9	106	2.600	0.955	0.384	0.147					
1	0														
1	1														
1	2														
1	3														
1	4														
1	5														
	-														

Note that the file name is now in the header.

- [Save] will over-write the prior version of this file without warning •
- [Save As...] will allow you to save the file with a new name

,† с	omprehensive meta an	alysis - [C:\	Users\Mici	nael\Dropb	ox\Worksh	ops 2\Guide	lines for care	diac arrest\G	uidelines fo	r cardiac arr	est.cma]				
<u>F</u> ile	<u>E</u> dit Format <u>V</u> iew]	Insert Ider	ntify <u>T</u> ool	s Comput	ational opti	ons Analys	es <u>H</u> elp								
Run	analyses 🔸 🗞 🗋 🕻	2 👬 日	😂 🕺	Þa 🛍	⁄2 ▶ ▶	= *≣ ;:8	1:08 🛗 👻	\downarrow \rightarrow +	• 🖌 🗔 🛔	21 <u>2</u> 1 🔍	1				
	Study name	New Alive	New Total N	Old Alive	Old Total N	Odds ratio	Log odds ratio	Std Err	Variance	J	к	L	м	N	
1	1 Steinmetz, 2008 41 226 21 193 1.815 0.596 0.288 0.083														
2	Stemmerz, 2006 41 226 21 135 1,815 0,395 0,395 0,083 2 Sayre, 2009 96 1021 40 660 1,609 0,475 0,195 0,038														
3	Olasveengen, 2009	63	482	46	435	1.272	0.240	0.206	0.043						
4	Robinson, 2010	20	170	18	162	1.067	0.065	0.345	0.119						
5	Hinchey, 2010	47	410	18	425	2.928	1.074	0.286	0.082						
6	Hung, 2010	30	430	47	463	0.664	-0.410	0.244	0.060						
7	Aufderheide,2010	211	1605	166	1641	1.345	0.296	0.110	0.012						
8	Bigham, 2011	177	2725	294	5054	1.125	0.118	0.098	0.010						
9	Lick, 2011	48	247	9	106	2.600	0.955	0.384	0.147						
10															
11															
12															
13															
14															
4.0															

By default the program displays the odds ratio.

This is what we want to use in the analysis, so no modification is needed.

• To run the analysis, click [Run analysis]

© www.Meta-Analysis.com

This is the basic analysis screen

Stretch the Study name column so the full name displays

Initially, the program displays the fixed-effect analysis. This is indicated by the tab at the bottom and the label in the plot.

Click [Both models]

The program displays results for both the fixed-effect and the random-effects analysis.

Data en	uy L+ Next	able	- nigh resolu				ci measure.	Odds Tallo			<u></u>	<u> </u>	
Model	Study name		Statis	tics for each	study			Ud	lds ratio and 95%	u			
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	0.01	0.10	1.00	10.00	100.00		
	Steinmetz, 2008	1.815	1.031	3.195	2.067	0.039			<u>⊢</u> +–				
	Sayre, 2009	1.609	1.097	2.358	2.435	0.015							
	Olasveengen,	1.272	0.849	1.905	i 1.164	0.244			+				
	Robinson, 2010	1.067	0.542	2.098	0.187	0.852			_ 				
	Hinchey, 2010	2.928	1.670	5.132	3.750	0.000				-			
	Hung, 2010	0.664	0.412	1.071	-1.680	0.093							
	Aufderheide,2010	1.345	1.084	1.669	2.688	0.007			+				
	Bigham, 2011	1.125	0.928	1.364	1.196	0.232			+				
	Lisk, 2011	2.600	1.225	5.515	i 2.489	0.013				-			
ed		1.293	1.153	1.451	4.395	0.000			+				
ndom		1.389	1.104	1.748	2.804	0.005			+				

The fact that the two results are not identical tells us that the weights are different, which means that the effect size varies from study to study. (This means that T^2 , the estimate of between-study variance in true effects is non-zero. It is *not* a test of statistical significance).

The confidence interval is wider for random-effects than for fixed-effects. This will always be the case when T^2 is non-zero.

The random-effects estimate of the effect size is slightly stronger (further from 1.0) than the fixed-effect estimate. The FE and RE estimates will almost always differ from each other when T^2 is non-zero, but the difference can be in either direction.

In any event, the random-effects model is a better fit for the way the studies were sampled, and therefore that is the model we will use in the analysis.

• Click Random on the tab at the bottom

The plot now displays the random-effects analysis alone.

Compre	ehensive meta anal	ysis - [Analy:	sis]											×
<u>F</u> ile <u>E</u> dit	F <u>o</u> rmat <u>V</u> iew Co	omputationa	l options A	nalyses <u>H</u> e	lp									
← Data er	ntry t⊐ Next t	able	- High resol	ution plot	Belect by	+ Effe	ct measure	e: Odds ratio	• 🔳 🗌] == 11	ĭ≇E ₹	🕻 🚺		
Model	Study name		Stati	stics for each	study			Odo	ls ratio and 95%	CI				
		Odds ratio	Lower limit	Upper limit	Z-Value	p∙Value	0.01	0.10	1.00	10.00	100.00			
	Steinmetz, 2008 Sayre, 2009 Olasveengen, Robinson, 2010	1.815 1.609 1.272 1.067	1.031 1.097 0.849 0.542	3.195 2.358 1.905 2.098	2.067 2.435 1.164 0.187	0.039 0.015 0.244 0.852								
	Hinchey, 2010 Hung, 2010 Aufderheide,2010 Bigham, 2011	2.928 0.664 1.345 1.125	1.670 0.412 1.084 0.928	5.132 1.071 1.669 1.364	3.750 -1.680 2.688 1.196	0.000 0.093 0.007 0.232				-				
Random	tick, 2011	2.600 1.389	1.225 1.104	5.515 1.748	2.489 2.804	0.013				-				
Fired R. Balic sta	andom Both mode	els oved Cu	mulative anal	vsis Calc	ulations									

A quick view of the plot suggests the following

- Almost all studies suggest an advantage for the new guidelines over the old
- In most studies this effect falls in the range of 1.067 to 2.928, though the CI for single studies extend well beyond that range. One study suggests that the old guidelines did better, but the effect is not statistically significant.
- The summary effect is 1.389 with a CI of 1.104 to 1.748. Thus, the mean effect is likely in the clinically important range.
- The summary effect has a Z-value 2.804 and a *p*-value of 0.005. Thus we can reject the null hypotheses that the true odds ratio is 1.0.
- It's clear from the plot that there is variation in the *observed* effects. It also looks like the observed variation exceeds the amount that we would expect to see based solely on within-study sampling error. For example, the CI for the Hinchey study has little (if any) overlap with the CI for the summary effect.
- We also know that there must be some true between-study variance in the sample, by virtue of the fact that the RE estimate is different than the FE estimate.
- To have a closer look at this variance we turn to the next table.

Click [Next table]

The statistics at the left duplicate those we saw on the prior screen.

- Under the random-effects model the odds ratio is 1.389 with a 95% confidence interval of 1.104 to 1.748. The test of the null (that the true risk ratio is 1.0) yields a Z-value of 2.804 and a corresponding p-value of 0.005.
- The statistics at the upper right relate to the dispersion of effect sizes across studies.
- The Q-value is 24.015 with df=8 and p=0.002. Q reflects the distance of each study from the mean effect (weighted, squared, and summed over all studies). Q is always computed using FE weights (which is the reason it is displayed on the "Fixed" row, but applies to both FE and RE analyses.
- If all studies actually shared the same true effect size, the expected value of Q would be equal to df (which is 8). Here, Q exceeds that value, and exceeds it by enough that the difference is probably not due to chance. The p-value of 0.002 allows us to reject the null hypothesis that all studies share the same true effect size, and conclude that the true effect size actually varies from study to study.
- T² is the estimate of the between-study variance in true effects. This estimate is 0.071. T is the estimate of the between-study standard deviation in true effects. This estimate is 0.267. Note that these values are in log units. Therefore, to use these estimates to compute confidence intervals or prediction intervals we would need to convert all values into log units, perform the computations, and convert the values back into odds ratios. (This is handled automatically by the program.)
- The variance in effect sizes includes both sampling error and variance in the true effect size from study to study. The *l*² value is 66.687, which tell is that about two-thirds of the *observed* variance in effect sizes reflects differences in *true* effect sizes. This means that if each of the

Guidelines for cardiac arrest

studies had a huge sample size (so that the observed effect closely mirrored the true effect size for that study's population) the observed effects would fall closer to each other than they do now, but would not align exactly. The variance of the observed effects would drop by about a third.

Click [Next table] to return to this screen

It's always important to see how much each study contributed to the summary effect. For example, if the summary effect was dominated by one or two studies, we would want to be aware of this and consider if it affects the generalizability of the results.

• Click the [Weights] button on the toolbar to display the relative weight assigned to each study.

🕂 Comprehe	ensive meta anal	ysis - [Analys	is]										
<u>File</u> Edit Fo	ormat <u>View</u> Co	mputational	options A	nalyses <u>H</u>	elp								
← Data entry	y t⊒ Next t	able 🚦	High resol	ution plot	E Select by .	+ Effe	ct measur	re: Odds ratio	- 8		[₽ Е ≹	Q 1	
Model	Study name		Statis	stics for each	n study			Od	lds ratio and 95%	СІ		Weight (Random)	
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	0.01	0.10	1.00	10.00	100.00	Relative weight	
S S C F F F F L L Random	Steinmetz, 2008 Sayre, 2009 Dlasveengen, Robinson, 2010 Hinchey, 2010 Aufderheide, 2010 Bigham, 2011 Lick, 2011	1.815 1.609 1.272 1.067 2.928 0.664 1.345 1.125 2.600 1.389	1.031 1.097 0.849 0.542 1.670 0.412 1.084 0.928 1.225 1.104	3.19 2.35 1.90 5.13 1.07 1.66 5.51 1.36 5.51	5 2.067 8 2.435 5 1.164 8 0.187 2 3.750 1 -1.680 8 2.688 4 1.196 5 2.489 8 2.804	0.039 0.015 0.244 0.852 0.000 0.093 0.007 0.232 0.013 0.005				-		8.90 12.57 12.08 7.22 8.96 10.51 16.49 17.00 6.29	
Fix d Rane Basic stats	dom Both mode	als wed Cur	nulative analy	ısis Cal	culations								

We can see that the relative weights ranged from a low of 3.29% to a high of 17.00%. So, no single study dominated the analysis. Five studies have relative weights in the range of 10% to 17% while the remaining four have weights in the range of 6% to 9%.

Do any studies appear to be outliers?

• Click the residual button on the toolbar to display the Residual column.

One study has a standardized residual of +2.00 while another has a standardized residual of -2.16. We may want to have a closer look at these and their impact on the analysis. It's likely that they offset each other's impact on the mean effect, while increasing the estimate of between-study variance.

Compre	Comprehensive meta analysis - [Analysis]													
<u>F</u> ile <u>E</u> dit	Format <u>V</u> iew Co	omputationa	l options A	Analyses <u>H</u> e	lp									
← Data en	try t⊒ Next t	able	🕂 High resol	lution plot	🔁 Select by .	. 🕇 🕂 Effe	ect measur	re: Odds ratio	- 3		3 E 🗦	Q		
Model	Study name		Stati	stics for each	study			Dd	lds ratio and 95%	: CI		Residual (Random)		
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	0.01	0.10	1.00	10.00	100.00	Std Residual		
	Steinmetz, 2008 Sayre, 2009 Olasveengen, Robinson, 2010 Hinchey, 2010 Hung, 2010 Aufderheide, 2010 Bigham, 2011 Lick, 2011	1.815 1.609 1.272 1.067 2.928 0.664 1.345 1.125 2.600	1.031 1.097 0.849 0.542 1.670 0.412 1.084 0.928 1.225	3.195 2.358 1.905 2.098 5.132 1.071 1.669 1.364 5.515	2.067 2.435 1.164 0.187 3.750 -1.680 2.688 1.196 2.489	0.039 0.015 0.244 0.852 0.000 0.093 0.007 0.232 0.013				_		0,71 0,48 0,28 0,63 2,00 -2,16 0,12 0,82 1,39		
Random Fixed Ra Basic stat	ndom Both mode s One study remo	els sved Cu	1.104 mulative anal	1.748 ysis Calc	2.804 sulations	0.005			+					

We might wonder how the summary effect would have shifted if any one study had been excluded from the analysis. To address this question we can run the analysis eight times, each time with a single study excluded.

The program allows us to run these eight analyses in one step.

Compre	Comprehensive meta analysis - [Analysis]												
<u>F</u> ile <u>E</u> dit	Format View Co	mputationa	l options A	nalyses <u>H</u>	elp								
🔶 Data er	itry t⊒ Next ta	able	High resol	ution plot	🔁 Select by	. 🕇 🕂 Effe	ect measure:	Odds ratio	- 3]	0		
Model	Study name		Statistic	s with study	removed			Odds ratio (S	95% CI) with stu	idy removed			
		Point	Lower limit	Upper limit	Z-Value	p-Value	0.01	0.10	1.00	10.00	100.00		
Random	Steinmetz, 2008 Sayre, 2009 Olasveengen, Robinson, 2010 Hinchey, 2010 Aufderheide, 2010 Bigham, 2011 Lick, 2011	1.354 1.365 1.414 1.422 1.281 1.487 1.416 1.459 1.330 1.389	1.061 1.057 1.089 1.112 1.046 1.205 1.058 1.105 1.059 1.104	1.728 1.762 1.834 1.811 1.563 1.835 1.894 1.928 1.670 1.748	2 2,440 2 2,387 4 2,604 7 2,811 9 2,333 5 3,702 4 2,341 6 2,661 9 2,450 8 2,804	0.015 0.017 0.009 0.005 0.017 0.000 0.019 0.008 0.014 0.005			+ + + + + + + + + + + + + + + + + + +				
Fixed Ra Basic stats	ar jom 3 One study remo	oved	mulative analy	usis Cal	culations								

• Click [One study removed] at the bottom.

The program displays this screen. The yellow line at the bottom is the analysis with all eight studies. The first row is what the yellow line would look like if the first study was excluded from the analysis. The second row is what the yellow line would look like if the second study was excluded from the analysis. And so on.

It seems that the effect size would remain pretty-much unchanged if any one study was removed – in other words, the conclusions are not dependent on any single study. The summary effect is an odds ratio of 1.389. If we remove any one study the effect size stays in the range of 1.281 to 1.489, which is probably not a clinically important difference.

For those concerned about significance tests, the p-value with all studies is 0.005, and it stays at < 0.02 with any single study removed.

We might wonder how the weight of the evidence has shifted over time. In other words, what would a meta-analysis have shown if we had performed it after the first study, after the first two studies, and so on.

To run this analysis we need to ensure that the studies are sorted by year on the data-entry screen. In this case, they are, and so we can proceed.

- Click [Cumulative analysis] on the bottom
- Click the tool for relative weights on the menu

The program displays this screen

Compret	Comprehensive meta analysis - [Analysis]													
<u>F</u> ile <u>E</u> dit	F <u>o</u> rmat <u>V</u> iew Co	omputationa	l options A	Analyses <u>H</u> e	elp									
← Data ent	ry t⊒ Next t	able	- High resol	lution plot	Belect by .	🕇 🕂 Effe	ct measu	re: Odds ra	atio 🛛 🛨 🗐]	I≇E	0 1		
Model	Study name		Cu	mulative statis	itics			C	Cumulative odds ratio (!	95% CI)		Weight (Random)		
		Point	Lower limit	Upper limit	Z-Value	p-Value	0.01	0.1	10 1.00	10.00	100.00	Relative weight		
	Steinmetz, 2008 Sayre, 2009 Olasveengen, Robinson, 2010 Hinchey, 2010 Hung, 2010	1.815 1.671 1.506 1.445 1.627 1.398	1.031 1.217 1.174 1.144 1.204 0.952	3.195 2.294 1.933 1.826 2.198 2.055	2.067 3.175 3.217 3.083 3.169 1.707	0.039 0.001 0.001 0.002 0.002 0.088			+++++++++++++++++++++++++++++++++++++++			8.90 21.46 33.54 40.76 49.72 60.23		
Bandom	Aufderheide,2010 Bigham, 2011 Lick, 2011	1.385 1.330 1.389	1.043 1.059 1.104 1.104	1.838 1.670 1.748 1.748	2.251 2.450 2.804	0.024 0.014 0.005			+++++++++++++++++++++++++++++++++++++++			76.72 93.71 100.00		
Fixed Ra	ndom	1.305	1.104	1.740	2.004	0.000								
Basic stats	Une study remo	oved Cum	ulative ana	ilysis Calo	ations									

The risk ratio would have been estimated at 1.815 after the one study, at 1.671 after two studies, and at 1.506 after three studies. From that point on, the estimate is pretty stable to the end.

While the estimate of the effect size changes little beyond the first three studies, the confidence interval narrows with each additional study, which means that we have a more precise estimate of the effect size. It also means that the p-value moves closer to zero.

This does not mean that the additional studies were unimportant. They may have provided important information about the robustness of the effect. They did provide information about other outcomes (not reported here).

Please note that the cumulative analysis shown here is intended only as a look-back. It would be a very bad idea to repeat a meta-analysis every time a new study was added to the literature, with the goal of stopping when the *p*-value hits 0.05. If the goal is to repeat the analysis every time a study is added, then adjustments must be made to the *p*-value and confidence interval.

- Click [Basic stats] to return to this screen
- Click [Both models] to display both Fixed-effect and Random-effects estimates
- Click [Weights] to display the relative weights assigned under both models

Comprehensive meta analysis - [Analysis] Elle, Edit, Ecompatibility Computational options, Analyses, Help,														
<u>File</u> Edit	Format <u>V</u> iew Co	omputationa	l options A	nalyses <u>H</u> e	зlp									
← Data en	try t <mark>⊐</mark> Next t	able	🕂 High resol	ution plot	Select by	🕂 🕂 Effe	ect measur	re: Odds ratio	- 🔳		ī‡E ₹	0		
Model	Study name		Stati	stics for each	study			1	Odds ratio and 95%	CI		Weight (Fixed)	Weight (Random)	
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	0.01	0.10	1.00	10.00	100.00	Relative weight	Relative weight	
Fixed Random	Steinmetz, 2008 Sayre, 2009 Olasveengen, Robinson, 2010 Hunge, 2010 Aufderheide, 2010 Bigham, 2011 Lick, 2011	1.815 1.609 1.272 1.067 2.928 0.664 1.345 1.125 2.600 1.293 1.389	1.031 1.097 0.849 0.542 1.670 0.412 1.084 0.928 1.225 1.153 1.104	3.195 2.358 1.905 2.098 5.132 1.071 1.669 1.364 5.515 1.451 1.748	2.067 2.435 1.164 0.187 3.750 -1.680 2.688 1.196 2.489 4.395 2.804	0.039 0.015 0.244 0.852 0.000 0.093 0.007 0.232 0.013 0.000 0.005				_		4.12 8.99 8.05 2.88 4.18 5.76 28.19 35.51 2.33	8.90 12.57 12.08 7.22 8.96 10.51 16.49 17.00 6.29	
Fixed Fi Basic stal	an om Both mod	els Cu	mulative analy	usis Calo	sulations									

As noted earlier, we use the random-effects model because it matches the way the studies were sampled. (As it happens, the test of homogeneity also yielded a p-value of 0.002, which tells us that the fixed-effect model is empirically false. However, we would have selected random-effects even if this *p*-value was not statistically significant).

In that context, this screen is presented purely for instructional purposes, to show how the weights affect the model.

The plot shows that the odds ratio moves slightly to the right (a larger effect, since we are working with values above 1.0) when we move from fixed-effect weights to random-effects weights. The columns with the weights show why this happens. The Bigham study happens to have an unusually small effect size relative to the others. This study also happens to have a large sample size. Under the FE model this study gets 35% of the weight, and pulls the summary effect to the left. Under the RE model this study gets only 17% of the weight. It still pulls the summary effect to the left, but not as much. The weight for other studies shifts as well, with the overall impact of the shifts being for the RE estimate to be slightly higher.

Next, we want to create a high-resolution plot.

When we click [Hi-Res], the screen will be recreated in a high-resolution plot. Therefore, *before* moving to that screen we need to determine which columns to include (or exclude). The basic idea is to exclude as many columns as possible, to ensure maximum clarity on the plot.

- Click [Weights] to hide the weights. In the high-res version these will be reflected in the size of each study.
- Click [Random] at the bottom.

Right-click anywhere in the section called [Statistics for each study] **Right-click here** The program opens a wizard as shown here Check the boxes for odds-ratio and p-value • Uncheck all other boxes • Click Ok • Comprehensive meta analysis - [Analysis] <u>File Edit Format View</u> Computational options Analyses <u>Help</u> 井 High resolution plot 🛛 🖶 Select by ... 🕇 + Effect measure: Odds ratio · 🗏 🖵 🏥 🚺 ‡ 🗜 🧎 🗘 Data entry t∓ Next table Odds ratio and 95% Cl Model Study name Statistics for each study Odds ratio Lower limit Upper limit Z-Value 0.01 0.10 1.00 10.00 p-Value 100.00 Steinmetz, 2008 1.815 1.031 2.067 0.039 3.195 2.435 1.144 Sayre, 2009 Olasveengen, 1.609 1.097 2.358 0.015 1.272 0.849 1.905 0.244 Bobinson, 2010 1.067 0.542 2.098 0.187 0.852 Hinchey, 2010 2.928 1.670 5.132 3.750 0.000 Hung, 2010 0.664 1.071 -1.680 0.412 0.093 Aufderheide,2010 Bigham, 2011 1.345 1.084 1.669 2.688 0.007 🔄 Customize display × 1.125 1.364 5.515 0.232 0.928 1.196 Show Decimals Alignment Lick. 2011 2.600 1.225 2.489 0.013 All columns in this block --Auto 💌 Auto Odds ratio • Auto 💌 Auto • Standard error Auto 💌 Auto • Variance Auto 💌 Auto • Lower limit Auto 💌 Auto • Upper limit Auto 💌 Auto -Z-Value Auto 💌 Auto - \mathbf{V} p-Value Cancel Apply Ok

 Fixed
 Bandom
 Both models

 Basic stats
 One study removed
 Cumulative analysis
 Calculations

• Click the tool for Hi-res plot

🕂 Compre	omprehensive meta analysis - [Analysis]												
<u>F</u> ile <u>E</u> dit	E Edit Format View Computational options Analyses Help Data entry t-7 Next table # High resolution plot B sel ot by + Effect measure: Odds ratio • E I # II # E E F V												
🔶 Data er	itry t⊒ Next t	table	- High resolu	tion plot	Sel ct by	🕂 Effec	t measure:	Odds ratio	- 🗏 🗮 🎞 🏝 E 🗦 🚺 🔍				
Model	Study name	Statistics for	each study		Od	ds ratio and 95	% CI						
		Odds ratio	p-Value	0.01	0.10	1.00	10.00	100.00	0				
Random	Steinmetz, 2008 Sayre, 2009 Olasveengen, Robinson, 2010 Hung, 2010 Aufderheide, 2010 Digham, 2011 Lick, 2011	0dds ratio 1.815 1.609 1.272 1.067 2.928 0.664 1.345 1.125 2.600 1.389	p-Value 0.039 0.015 0.244 0.852 0.000 0.093 0.007 0.232 0.013 0.005	0.01									

 Fixed
 Random
 Both models

 Basic stats
 One study removed
 Cumulative analysis
 Calculations

- On this screen click [Reset all]
- The screen should look like this

Comprehensive meta analysis - [Analysis]				- 0
e Edit Format View Computational options Colo	rs <u>H</u> elp			
Data entry	n plot 🛛 🖶 💳 🖛 🔜 🌲 🛄 🍡 One si	ize 🍗 Proportional 🗶	Reset all 🛛 🗰 vole page 🔹 Color Mode 🔀 👻 😱	
		Meta An	alysis	
			,	
	Study name		Odds ratio and 95% Cl	
	0	dds		
	r.	atio p-Value		
	Steinmetz, 2008 1	.815 0.039		
	Sayre, 2009 1	.609 0.015		
	Olasveengen, 2009 1	.272 0.244		
	Robinson, 2010 1	.067 0.852	+ +	
	Hinchey, 2010 2	.928 0.000		
	Hung, 2010 0	.664 0.093		
	Aufderheide,2010 1	.345 0.007		
	Bigham, 2011 1	.125 0.232		
	Lick, 2011 2	.600 0.013		
	I	.369 0.003		
			0.01 0.1 1 10 100	
			Favours A Favours B	
	Meta Analysis			

At this point we can allocate more or less space to each element of the plot

- Right click on the forest plot
- Select [Spacing and forest plot width]

© www.Meta-Analysis.com

Guidelines for cardiac arrest

- If using Windows 7 you may need to drag the bottom edge of this (and other) toolbars to make it fully visible.
- Select [Right buffer] and then [Remove]
- This removes the space to the right of the forest plot (we don't need it since we have no columns to the right of the forest plot)

Comprehensiv	e meta analysis - [Analy at View Computation	ysis] al antions Calors H	eln										
 Data entry 	← Return to table	+ High resolution plot	 	- 📭 🔜 🏛 🛄 🌯 One	e size 🍗 P	roportional 🗶	Reset all	Whole page	+ Co	olor Mode 🔀	- 🕠	 	
					Me	eta An	alysi	s			_	٦	
				Study name				Odds rat	tio and	95% CI			
					Odds ratio	p-Value							
				Steinmetz, 2008	1.815	0.039			-∎-		1		
	Spacing and forest pl	at uidth		× 9	1.609	0.015							
	ទាំ ទាំ ទាំ ទាំ ទាំ ទាំ ^R	ese Remove	ה ו	n, 2009	1.272	0.244			Ξ.				
	Row spacing Column	spacing Forest plot wi	dth Left bu fer	Right buffer 0.0	2 928	0.000			Τ.	L			
				Hung, 2010	0.664	0.093		.		'			
				Aufderheide, 2010	1.345	0.007							
				Bigham, 2011	1.125	0.232							
				Lick, 2011	2.600	0.013				-			
					1.389	0.005			•				
							0.01	0.1	1	10 1	100		
							F	avours A	Fa	avours B			
				Meta Analysis							-		

- Click [Forest plot width]
- Click the $\uparrow \uparrow$ button. This will increase the width of the plot section.

- Right-click on the words "Favours A" or "Favours B" to open a dialog
- Change these to "Favors Old" and "Favors New"
- Click [Apply]
- Click on [Font]
- Click $\uparrow \uparrow$ to increase the font size

- Right-click on the title
- Set the title to "New vs. Old Guidelines for Cardiac Arrest" |Click [Apply]

File Edit Fgrmat View Computational options Colors Help Colata entry Color Mode I High resolution plot	
← Data entry ← Return to table 🔆 High resolution plot 🖟 🖻 ➡ 🕪 🛄 I 💭 One size 🖕 Proportional X Reset al Whole page → Color Mode K → Q	
New vs. Old Guidelines for Cardiac Arrest	
Odds ratio and 95% Cl	
Harder X ✓ New vs. Old Guidelines for Cardiac Ar Apply Text, Font Line under header Odds ratio p-Value	
Steinmetz, 2008 1.815 0.039	
Sayre, 2009 1.609 0.015	
Olasveengen, 2009 1.272 0.244	
Robinson, 2010 1.067 0.852	
Hinchey, 2010 2.928 0.000 -	
Hung, 2010 0.664 0.093 -	
Aufderheide, 2010 1.345 0.007	
Bigham, 2011 1.125 0.232	
Lick, 2011 2.600 0.013	
1.389 0.005	
0.01 0.1 1 10 100	
Favours Old Favours New	
Meta Analyza	

- Click Format > Footer
- Enter the text "Random-effects analysis"
- Depress the check-box at the left of this toolbar
- Adjust the font

Edit Format View Computational options Colors <u>H</u> elp Data entry ← Return to table THigh resolution plot) = + 101 ‡ '	One size	Proportiona	al 🗶 Reset	al Whole pa	ige - Col	or Mode 🔀	• (0)]	
	New vs.	Old C	fuideli	nes f	Or Car	atio and 9	s% ci	t		
Fonter Image: Content of the second	nmetz, 2008 e, 2009 veengen, 2009 linschey, 2010 Hinchey, 2010 Aufderheide, 2010 Bigham, 2011 Lick, 2011	ratio 1.815 1.609 1.272 1.067 2.928 0.664 1.345 1.125 2.600 1.389	p-Value 0.039 0.015 0.244 0.852 0.000 0.093 0.007 0.232 0.013 0.005				-			
				0.01 F	0.1 avours Old	1 I Fa	10 vours Ne	100 ew		
	Random-effects and	alysis								

• Click Color for Slides

٠

© <u>www.Meta-Analysis.com</u> Guidelines for cardiac arrest

New vs.	Old (Guideli	nes fo	r Caro	diac A	rrest			
Study name				Odds ra	tio and 95	i% CI			
	Odds ratio	p-Value							
Steinmetz, 2008	1.815	0.039							
Sayre, 2009	1.609	0.015							
Olasveengen, 2009	1.272	0.244							
Robinson, 2010	1.067	0.852							
Hinchey, 2010	2.928	0.000							
Hung, 2010	0.664	0.093		-	-				
Aufderheide,2010	1.345	0.007							
Bigham, 2011	1.125	0.232							
Lick, 2011	2.600	0.013							
	1.389	0.005			\diamond				
			0.01	0.1	1	10	100		
			_	-	-				

• Right-click on the title

•

- Click Font | Click the Color button
- Select a color | Click Ok

👬 Comprehen	isive meta analysis - [A	nalysis]									
File Edit F <u>o</u> r	rmat View Computa	tional options Colors <u>F</u>	lelp								
← Data entry	+ Return to tabl	e 井 High resolution plot	₽ = + • :	Cone size	Proportion	al 🗙 Rese	t all Whole pa	age • Col	lors for slides 🔀	• 🕀	
		_									
			New vs.	Old (Guideli	nes f	or Car	diac /	Arrest		N
										-	45
			Study name				Odds	ratio and 9	95% CI		
	Handar		<u>×</u>								
	B A A A A	Reset E		ratio	p-Value						
	Text Font Line und	er header									
			Steinmetz, 2008	1.815	0.039					Color	
			Sayre, 2009	1.609	0.015					Basic colors:	
			Olasveengen, 2009	1.272	0.244						
			Robinson, 2010	1.067	0.852						
			Hinchey, 2010	2.928	0.000						
			Hung, 2010	0.664	0.093						
			Aufderheide,2010	1.345	0.007						
			Bigham, 2011	1.125	0.232						
			Lick, 2011	2.600	0.013					Custom colors:	
				1.389	0.005						
						0.01	0.1	1	10		
						F	avours Ob	d Fa	vours New	Define Custom Colors >>	
									inours new	OK Cancel	
			Pandom offects an	alveir							
			Random-errects an	alysis							

- Click Line Under Header
- Click the color tool |Select a color
- Click Ok

© <u>www.Meta-Analysis.com</u> Guidelines for cardiac arrest

- Right-click on the plot
- Select Line thickness

Select Scale Anchors and increase the size. This ensures that the vertical lines will be visible in PowerPoint.

© <u>www.Meta-Analysis.com</u>

Guidelines for cardiac arrest

Click File > Export to PowerPoint

計 Comprehensive meta analysis - [Analysis]											
File Edit Format View Computational options Colors Help											
Page size and margins ble 😩 High resolution plot 🖵	= = + 🗰 🗔 🏛 🔲	One size	Proportion	al 🗶 Res	set all Whole pa	ge • Co	olors for slides	< - 🕖			
Print		-		_		-					
Export to Word (tm)											
Export to PowerPoint (tm)											
Save as WMF file											
← Return to table	New vs.	Old C	iuideli	nes	for Car	diac .	Arrest				
	Study name				Odds r	atio and	95% CI				
		Odds									
		ratio	p-Value								
	Steinmetz, 2008	1.815	0.039								
	Sayre, 2009	1.609	0.015								
	Olasveengen, 2009	1.272	0.244								
	Robinson, 2010	1.067	0.852								
	Hinchey, 2010	2.928	0.000								
	Hung, 2010	0.664	0.093								
	Aufderheide,2010	1.345	0.007								
	Bigham, 2011	1.125	0.232								
	Lick, 2011	2.600	0.013								
		1.389	0.005			- I 🔶 -					
				0.01	0.1	1	10	100			
					Favours Old	E F	avours Ne	w			
	Random-effects and	alysis									

Look for the PowerPoint icon on your Windows toolbar and click

© www.Meta-Analysis.com

Guidelines for cardiac arrest

Depending on which version of PowerPoint you're using, you may need to stretch the plot to cover the full slide

Summary

This analysis includes nine studies where patients were randomized to be treated for cardiac arrest based on either old guidelines or new guidelines. Outcome was survival (being alive), and we used the odds ratio as the effect size.

Do the guidelines affect the likelihood of survival?

The mean odds ratio is 1.389, which means that being assigned to the newer guidelines resulted in a higher chance of surviving.

These studies were sampled from a universe of possible studies defined by certain inclusion/exclusion rules as outlined in the full paper. The confidence interval for the odds ratio is 1.104 to 1.748, which tell us that the <u>mean</u> odds ratio in the universe of studies could fall anywhere in this range. This range does not include an odds ratio of 1.0, which tells us that the mean odds ratio is probably not 1.0.

Similarly, the Z-value for testing the null hypothesis (that the mean odds ratio is 1.0) is 2.004, with a corresponding p-value of 0.005. We can reject the null that the likelihood of survival is the same in both groups, and conclude that the likelihood of survival is higher in the new-guidelines group.

Does the effect size vary across studies?

The *observed* effect size varies somewhat from study to study, but a certain amount of variation is expected due to sampling error. We need to determine if the observed variation falls within the range that can be attributed to sampling error (in which case there is no evidence of variation in true effects), or if it exceeds that range.

The *Q*-statistic provides a test of the null hypothesis that all studies in the analysis share a common effect size. If all studies shared the same effect size, the expected value of *Q* would be equal to the degrees of freedom (the number of studies minus 1).

The *Q*-value is 24.015 with 8 degrees of freedom and the corresponding p-value is 0.002. Thus, we can reject the null hypothesis that the true odds ratio is the same in all studies, and all the variation in observed effects is due to sampling error.

The l^2 statistic tells us what proportion of the observed variance reflects differences in true effect sizes rather than sampling error. l^2 is 66.689, which means that about two-thirds of the observed variance reflects variance in true effects. Put another way, if we could plot the true effects rather than the observed effects, the variance of the new plot would shrink by about a third.

 T^2 is the variance of true effect sizes (in log units). Here, T^2 is 0.071 in log units. T is the standard deviation of true effects (in log units). Here, T is 0.267 in log units.